

Overview

- Silica is always present in geothermal fluids and tends to precipitate with cooling
- Can we induce silica precipitation and produce a marketable byproduct?

Silica Evolution in Geothermal Plants

March 7, 2002

aggregates

Benefits

- Extract more energy from the resource
- Produce additional revenue from a marketable by-product
- Eliminate scaling and re-injection problems
- Allow additional downstream resource extraction

Project Plan

Goal: Develop a process that produces a marketable silica precipitate.

Work scope:

- Select field sites
- Carry out lab tests to identify promising silica extraction methods
- Extract silica at field sites
- Characterize precipitates
- Market testing
- Optimize process for markets

Potential Field Sites

- * Mammoth (binary)
 - 1200 ppm TDS
 - -250 ppm SiO_2
- Coso (flash)
 - 7000-10,000 ppm TDS
 - 600-800 ppm SiO₂
- * Salton Sea (flash)
 - 300,000 ppm TDS
 - $-600-700 \text{ ppm SiO}_2$
- * Heber (both)
 - 14,000 ppm TDS

Need to lower silica concentration in spent geothermal fluid for use in water cooling facilities.

Co-produce silica for added revenue. Plant successfully uses brine acidification to control silica scale.

Chemical Controls on Silica Precipitation

Experimental Methods

Base

- (1) Geothermal brine flows
- into stirred reactor
- (2) Precipitation induced by
- pH increase
- cooling
- salt addition

Dispersant

(3) Silica precipitates captured for characterization and fluid analyzed to determine yield

Mobile On-Site Test Facility

Characterization of Silica Precipitates

March 7, 2002 CEC kick-off meeting Page 11 of 14

Commercial Silicas

Product	Cost/pound	Market Size
Cement additive	<10 ¢	large
Dessicant	2-10 ¢	large
Toxin removal	\$0.1-1	moderate
Waste&odor control	\$1-3 (retail)	moderate
Paper additive	\$1-5	moderate
Rubber additive	\$0.5-4	moderate
Polishing compound	\$5-10	small
Chromatography	high	tiny

Salton Sea Geothermal Site

What's Next?

- Additional sites
- Additional markets
- •Lithium extraction
- •Other metals

Personnel

LLNL

Bill Bourcier - Principle Investigator Carol Bruton — Project Manager Sue Martin — Lab principal Bill Ralph — Field principal Adam Wallace - Roustabout

Consultants

John Byers – Byers Rubber Consulting Larry Lien – Osmonics Membranes Don Askea – B. F. Goodrich Don Eisenhour – American Colloid